SG01D–5LENS
Concentrator lens SiC based UV photodiode $A_{\text{virtual}} = 11,0 \text{ mm}^2$

GENERAL FEATURES

Properties of the SG01D–5LENS UV photodiode
- Broadband UVA+UVB+UVC, PTB reported high chip stability, for flame detection
- Radiation sensitive area $A = 11,0 \text{ mm}^2$
- TO5 hermetically sealed metal housing with concentrator lens, 1 isolated pin and 1 case pin
- $1\mu\text{W/cm}^2$ peak radiation results a current of approx. 35 nA

About the material Silicon Carbide (SiC)
SiC provides the unique property of extreme radiation hardness, near-perfect visible blindness, low dark current, high speed and low noise. These features make SiC the best available material for visible blind semiconductor UV detectors. The SiC detectors can be permanently operated at up to 170°C (338°F). The temperature coefficient of signal (responsivity) is also low, $< 0,1%/\text{K}$. Because of the low noise (dark current in the fA range), very low UV radiation intensities can be measured reliably. Please note that this device needs an appropriate amplifier (see typical circuit on page 3).

Options
SiC photodiodes are available with five different active chip areas from 0,06 mm2 up to 4,00 mm2. Standard version is broadband UVA-UVB-UVC. Four filtered versions lead to a tighter sensitivity range. All photodiodes have a hermetically sealed metal housing (TO type), either a 5,5 mm diameter TO18 housing or a 9,2 mm TO5 housing. Further option is either a 2 pin header (1 isolated, 1 grounded) or a 3 pin header (2 isolated, 1 grounded).

NOMENCLATURE

<table>
<thead>
<tr>
<th>Chip area</th>
<th>Spectral response</th>
<th>Housing</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>nothing = broadband</td>
<td>$\lambda_{\text{max}} = 280 \text{ nm}$, $\lambda_{10%} = 221 \text{ nm} \ldots 358 \text{ nm}$</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>A = UVA</td>
<td>$\lambda_{\text{max}} = 331 \text{ nm}$, $\lambda_{30%} = 309 \text{ nm} \ldots 367 \text{ nm}$</td>
<td>18ISO90</td>
</tr>
<tr>
<td>D</td>
<td>B = UVB</td>
<td>$\lambda_{\text{max}} = 280 \text{ nm}$, $\lambda_{30%} = 231 \text{ nm} \ldots 309 \text{ nm}$</td>
<td>18S</td>
</tr>
<tr>
<td>L</td>
<td>C = UVC</td>
<td>$\lambda_{\text{max}} = 275 \text{ nm}$, $\lambda_{30%} = 225 \text{ nm} \ldots 287 \text{ nm}$</td>
<td></td>
</tr>
<tr>
<td>XL</td>
<td>E = UV-Index</td>
<td>spectral response according to CIE087</td>
<td></td>
</tr>
</tbody>
</table>

Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.
SG01D–5LENS

Concentrator lens SiC based UV photodiode $A_{\text{virtual}} = 11.0 \, \text{mm}^2$

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectral Characteristics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical Responsivity at Peak Wavelength</td>
<td>S_{max}</td>
<td>0.130</td>
<td>AW$^{-1}$</td>
</tr>
<tr>
<td>Wavelength of max. Spectral Responsivity</td>
<td>λ_{max}</td>
<td>280</td>
<td>nm</td>
</tr>
<tr>
<td>Responsivity Range ($S=0.1*S_{\text{max}}$)</td>
<td>$221 \ldots 358$</td>
<td>nm</td>
<td></td>
</tr>
<tr>
<td>Visible Blindness ($S_{\text{max}}/S_{>405\text{nm}}$)</td>
<td>VB</td>
<td>$>10^{10}$</td>
<td></td>
</tr>
<tr>
<td>General Characteristics (T=25°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitive Area (chip size $= 0.50 , \text{mm}^2$)</td>
<td>A</td>
<td>11.0</td>
<td>mm2</td>
</tr>
<tr>
<td>Dark Current (1V reverse bias)</td>
<td>I_{d}</td>
<td>1.7</td>
<td>fA</td>
</tr>
<tr>
<td>Capacitance</td>
<td>C</td>
<td>125</td>
<td>pF</td>
</tr>
<tr>
<td>Short Circuit (μW/cm2 at peak)</td>
<td>I_{o}</td>
<td>35</td>
<td>nA</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>T_{c}</td>
<td>< 0.1</td>
<td>%/K</td>
</tr>
<tr>
<td>Maximum Ratings</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>T_{opt}</td>
<td>$-55 \ldots +170$</td>
<td>°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>T_{stor}</td>
<td>$-55 \ldots +170$</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature (35)</td>
<td>T_{sold}</td>
<td>260</td>
<td>°C</td>
</tr>
<tr>
<td>Reverse Voltage</td>
<td>V_{Rmax}</td>
<td>20</td>
<td>V</td>
</tr>
</tbody>
</table>

NORMALIZED SPECTRAL RESPONSIVITY

![Normalized Spectral Responsivity](image)

sglux GmbH | Max-Planck-Str. 3 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de

Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.
SG01D–5LENS
Concentrator lens SiC based UV photodiode $A_{\text{virtual}} = 11.0 \, \text{mm}^2$

FIELD OF VIEW

Measurement Setup:
- lamp aperture diameter: 10 mm
- distance lamp aperture to second aperture: 17 mm
- second aperture diameter: 10 mm
- distance second aperture to detector: 93 mm
- pivot level = top surface of the photodiode window

TYPICAL CIRCUIT

Calculations and Limits:
- $U_x = I_x R_x \Rightarrow 0 \Rightarrow V_x$
- U_{now} depends on load and amplifier type
- $R_x = 10k\Omega \Rightarrow 10G\Omega$, $C_x = 3pF$
- Recommendation: $R_x C_x \geq 10$ s
- $I_{\text{now}} = U_{\text{now}} \div R_x$
- Bandwidth = DC...
 \[
 \frac{1}{2\pi \times R_x \times C_x}
 \]
- Example:
 $I_x = 20mA$, $R_x = 100M\Omega$, $C_x = 100 \, \text{pF}$
 $U_x = 20 \times 10^5\, \text{A} \times 100 \times 10^5[\text{]} = 2V$

DRAWINGS

sglux GmbH | Max-Planck-Str. 3 | D–12489 Berlin | Tel. +49 30 5301 5211 | welcome@sglux.de | www.sglux.de

Rev. 6.0 Due to our strive for continuous improvement, specifications are subject to change within our PCN policy according to JESD46C.
APPLICATION NOTE FOR PHOTODIODES

For correct reading of the photodiode the current (and NOT the voltage) must be analyzed. This requires a short-circuiting of the photodiode. Usual approaches are using a Picoamperemeter or a transimpedance amplifier circuit as shown on page 3.

UPGRADE TO A TOCON OR A PROBE

TOCONs = UV sensors with integrated amplifier
- SiC based UV hybrid detector with amplifier (0–5V output), no additional amplifier needed, direct connection to controller, voltmeter, etc.
- Measures intensities from 1.8 pW/cm² up to 18 W/cm²
- UV broadband, UVA, UVB, UVC or Erythema measurements

Miniature housing with M12x1 thread for the TOCON series
- Optional feature for all TOCON detectors
- Robust stainless steel M12x1 thread body
- Integrated sensor connector (Binder 5-Pin plug) with 2m connector cable
- Easy to mount and connect

Industrial UV probes
- Different housings e.g. with cosine response, water pressure proof or sapphire windows
- Different electronic outputs configurable (voltage, current, USB, CAN)
- Good EMC safety for industrial applications

CALIBRATION SERVICE

- Different NIST and PTB traceable calibrations and measurements for all sglux sensors
- Calibration of sensors for irradiation measurements
- Calibration of UV sensors on discrete wavelengths
- Determination of a specific spectral sensor responsivity